Facts About Two Stroke Engine Lambretta Scooter



Facts about two stroke petrol engines. A two stroke, or two-cycle, engine is a type of internal combustion engine which completes a power cycle with two strokes (up and down movements) of the piston during only one crankshaft revolution. This is in contrast to a “four-stroke engine”, which requires four strokes of the piston to complete a power cycle. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust (or scavenging) functions occurring at the same time. Two-stroke engines often have a high power-to-weight ratio, power being available in a narrow range of rotational speeds called the “power band”. Compared to four-stroke engines, two-stroke engines have a greatly reduced number of moving parts, and so can be more compact and significantly lighter. The first commercial two-stroke engine involving in-cylinder compression is attributed to Scottish engineer Dugald Clerk, who patented his design in 1881. However, unlike most later two-stroke engines, his had a separate charging cylinder. The crankcase-scavenged engine, employing the area below the piston as a charging pump, is generally credited to Englishman Joseph Day. The first truly practical two-stroke engine is attributed to Yorkshireman Alfred Angas Scott, who started producing twin-cylinder water-cooled motorcycles in 1908. Gasoline (spark ignition) versions are particularly useful in lightweight or portable applications such as chainsaws and motorcycles. However, when weight and size are not an issue, the cycle’s potential for high thermodynamic efficiency makes it ideal for diesel compression ignition engines operating in large, weight-insensitive applications, such as marine propulsion, railway locomotives and electricity generation. In a two-stroke engine, the heat transfer from the engine to the cooling system is less than in a four-stroke, which means that two-stroke engines can be more efficient. Crankcase-compression two-stroke engines, such as common small gasoline-powered engines, create more exhaust emissions than four-stroke engines because their two-stroke oil (petroil) lubrication mixture is also burned in the engine, due to the engine’s total-loss oiling system. Two-stroke petrol engines are preferred when mechanical simplicity, light weight, and high power-to-weight ratio are design priorities. With the traditional lubrication technique of mixing oil into the fuel, they also have the advantage of working in any orientation, as there is no oil reservoir dependent on gravity; this is an essential property for hand-held power tools such as chainsaws. A number of mainstream automobile manufacturers have used two-stroke engines in the past, including the Swedish Saab and German manufacturers DKW, Auto-Union, VEB Sachsenring Automobilwerke Zwickau, and VEB Automobilwerk Eisenach. The Japanese manufacturer Suzuki did the same in the 1970s. Production of two-stroke cars ended in the 1980s in the West, due to increasingly stringent regulation of air pollution. Eastern Bloc countries continued until around 1991, with the Trabant and Wartburg in East Germany. Two-stroke engines are still found in a variety of small propulsion applications, such as outboard motors, high-performance, small-capacity motorcycles, mopeds, and dirt bikes, underbones, scooters, tuk-tuks, snowmobiles, karts, ultralight airplanes, and model airplanes and other model vehicles. They are also common in power tools used outdoors, such as lawnmowers, chainsaws, and weed-wackers. With direct fuel injection and a sump-based lubrication system, a two-stroke engine produces air pollution no worse than a four-stroke, and it can achieve higher thermodynamic efficiency. Therefore, the cycle has historically also been used in large diesel engines, most notably large industrial and marine engines, as well as some trucks and heavy machinery. There are several experimental designs intended for automobile use: for instance, Lotus of Norfolk, UK, has a prototype direct-injection two-stroke engine intended for alcohol fuels called the Omnivore which it is demonstrating in a version of the Exige. Although the principles remain the same, the mechanical details of various two-stroke engines differ depending on the type. The design types vary according to the method of introducing the charge to the cylinder, the method of scavenging the cylinder (exchanging burnt exhaust for fresh mixture) and the method of exhausting the cylinder. Piston port is the simplest of the designs and the most common in small two-stroke engines. Functions are controlled solely by the piston covering and uncovering the ports as it moves up and down in the cylinder. In the 1970s, Yamaha worked out some basic principles for this system. They found that, in general, widening an exhaust port increases the power by the same amount as raising the port, but the power band does not narrow as it does when the port is raised.

source

(2)

Leave a Reply

Your email address will not be published. Required fields are marked *